Advertisement
Research Article| Volume 21, ISSUE 6, P509-520, December 2021

Molecular Classification of Triple Negative Breast Cancer and the Emergence of Targeted Therapies

Published:September 16, 2021DOI:https://doi.org/10.1016/j.clbc.2021.09.003

      Abstract

      Triple negative breast cancer (TNBC) represents 15% to 20% of all primary breast cancers and is the most aggressive subtype of breast cancer. There has been rapid progress in targeted therapy and biomarker development to identify the optimal treatments for TNBC.
      To update recent developments, this article comprehensively reviews molecular classification and biomarkers of TNBC and targeted therapy developments in immunotherapy, PARP and AKT pathway inhibitors, antibody-drug conjugates and androgen receptor blockade.
      The treatment of TNBC has dramatically evolved beyond basic cytotoxic chemotherapy into an expanding domain of targeted therapies tailored to the heterogeneity of this complex and aggressive disease. Progress will continue through the sustained and devoted efforts of our investigators and the patients who dedicatedly enroll in clinical trials. Through a daring persistence to challenge the status quo we now have the opportunity to offer our patients with TNBC a new sense of hope.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Breast Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Plasilova ML
        • Hayse B
        • Killelea BK
        • Horowitz NR
        • Chagpar AB
        • Lannin DR.
        Features of triple-negative breast cancer: Analysis of 38,813 cases from the national cancer database.
        Medicine (Baltimore). 2016; 95: e4614https://doi.org/10.1097/md.0000000000004614
        • Li X
        • Oprea-Ilies GM
        • Krishnamurti U.
        New developments in Breast Cancer and their impact on daily practice in pathology.
        Arch Pathol Lab Med. 2017; 141: 490-498https://doi.org/10.5858/arpa.2016-0288-SA
        • Kast K
        • Link T
        • Friedrich K
        • et al.
        Impact of breast cancer subtypes and patterns of metastasis on outcome.
        Breast Cancer Res Treat. 2015; 150: 621-629https://doi.org/10.1007/s10549-015-3341-3
        • Dent R
        • Hanna WM
        • Trudeau M
        • Rawlinson E
        • Sun P
        • Narod SA.
        Pattern of metastatic spread in triple-negative breast cancer.
        Breast Cancer Res Treat. 2009; 115: 423-428https://doi.org/10.1007/s10549-008-0086-2
        • Li X
        • Yang J
        • Peng L
        • et al.
        Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer.
        Breast Cancer Res Treat. 2017; 161: 279-287https://doi.org/10.1007/s10549-016-4059-6
        • Perou CM
        • Sørlie T
        • Eisen MB
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752https://doi.org/10.1038/35021093
        • Sørlie T
        • Perou CM
        • Tibshirani R
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci U S A. 2001; 98: 10869-10874https://doi.org/10.1073/pnas.191367098
        • Li X
        • Zhang Y
        • Meisel J
        • Jiang R
        • Behera M
        • Peng L.
        Validation of the newly proposed American Joint Committee on Cancer (AJCC) breast cancer prognostic staging group and proposing a new staging system using the National Cancer Database.
        Breast Cancer Res Treat. 2018; 171: 303-313https://doi.org/10.1007/s10549-018-4832-9
        • Herschkowitz JI
        • Simin K
        • Weigman VJ
        • et al.
        Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors.
        Genome Biol. 2007; 8: R76https://doi.org/10.1186/gb-2007-8-5-r76
        • Creighton CJ
        • Li X
        • Landis M
        • et al.
        Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
        Proc Natl Acad Sci U S A. 2009; 106: 13820-13825https://doi.org/10.1073/pnas.0905718106
        • Fougner C
        • Bergholtz H
        • Norum JH
        • Sørlie T.
        Re-definition of claudin-low as a breast cancer phenotype.
        Nat Commun. 2020; 11: 1787https://doi.org/10.1038/s41467-020-15574-5
        • Lehmann BD
        • Bauer JA
        • Chen X
        • et al.
        Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies.
        J Clin Invest. 2011; 121: 2750-2767https://doi.org/10.1172/jci45014
        • Masuda H
        • Baggerly KA
        • Wang Y
        • et al.
        Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes.
        Clin Cancer Res. 2013; 19: 5533-5540https://doi.org/10.1158/1078-0432.Ccr-13-0799
        • Lehmann BD
        • Jovanović B
        • Chen X
        • et al.
        Refinement of Triple-Negative Breast Cancer Molecular subtypes: implications for Neoadjuvant Chemotherapy selection.
        PLoS One. 2016; 11e0157368https://doi.org/10.1371/journal.pone.0157368
        • Echavarria I
        • López-Tarruella S
        • Picornell A
        • et al.
        Pathological response in a Triple-Negative Breast Cancer Cohort treated with Neoadjuvant Carboplatin and Docetaxel according to Lehmann’s refined classification.
        Clin Cancer Res. 2018; 24: 1845-1852https://doi.org/10.1158/1078-0432.Ccr-17-1912
        • Burstein MD
        • Tsimelzon A
        • Poage GM
        • et al.
        Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer.
        Clin Cancer Res. 2015; 21: 1688-1698https://doi.org/10.1158/1078-0432.Ccr-14-0432
        • Prado-Vázquez G
        • Gámez-Pozo A
        • Trilla-Fuertes L
        • et al.
        A novel approach to triple-negative breast cancer molecular classification reveals a luminal immune-positive subgroup with good prognoses.
        Sci Rep. 2019; 9: 1538https://doi.org/10.1038/s41598-018-38364-y
      1. Schneider B, Miller K, Badve S, et al. Abstract OT3-04-01: BRE12-158: A phase II randomized controlled trial of genomically directed therapy after preoperative chemotherapy in patients with triple negative breast cancer (TNBC).Cancer Res. 2017;77(4 Supplement):OT3-04-01-OT3-04-01. doi:10.1158/1538-7445.Sabcs16-ot3-04-01

        • Jiang YZ
        • Liu Y
        • Xiao Y
        • et al.
        Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: The FUTURE trial.
        Cell Res. 2020; https://doi.org/10.1038/s41422-020-0375-9
        • Zhao J
        • Meisel J
        • Guo Y
        • et al.
        Evaluation of PD-L1, tumor-infiltrating lymphocytes, and CD8+ and FOXP3+ immune cells in HER2-positive breast cancer treated with neoadjuvant therapies.
        Breast Cancer Res Treat. 2020; 183: 599-606https://doi.org/10.1007/s10549-020-05819-8
        • Krishnamurti U
        • Wetherilt CS
        • Yang J
        • Peng L
        • Li X.
        Tumor-infiltrating lymphocytes are significantly associated with better overall survival and disease-free survival in triple-negative but not estrogen receptor-positive breast cancers.
        Hum Pathol. 2017; 64: 7-12https://doi.org/10.1016/j.humpath.2017.01.004
        • Li X
        • Wetherilt CS
        • Krishnamurti U
        • et al.
        Stromal PD-L1 expression is associated with better disease-free survival in triple-negative Breast Cancer.
        Am J Clin Pathol. 2016; 146: 496-502https://doi.org/10.1093/ajcp/aqw134
        • Mittendorf EA
        • Zhang H
        • Barrios CH
        • et al.
        Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomized, double-blind, phase III trial.
        Lancet. 2020; 396: 1090-1100https://doi.org/10.1016/s0140-6736(20)31953-x
        • Barroso-Sousa R
        • Tolaney SM.
        Pembrolizumab in the preoperative setting of triple-negative breast cancer: Safety and efficacy.
        Expert Rev Anticancer Ther. 2020; https://doi.org/10.1080/14737140.2020.1823224
        • Schmid P
        • Cortes J
        • Pusztai L
        • et al.
        Pembrolizumab for early Triple-Negative Breast Cancer.
        N Engl J Med. 2020; 382: 810-821https://doi.org/10.1056/NEJMoa1910549
        • Schmid P
        • Cortes J.
        • Dent R.
        • et al.
        VP7-2021: KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs.
        Placebo for early-stage TNBC. 2021; 32: 1198-1200
      2. Staff TAP. FDA Approves Pembrolizumab in Combination for High-Risk, Early-Stage Triple-Negative Breast Cancer. Accessed August 30, 2021, 2021. Available at: https://ascopost.com/issues/august-25-2021/fda-approves-pembrolizumab-in-combination-for-high-risk-early-stage-triple-negative-breast-cancer

        • Nanda R
        • Liu MC
        • Yau C
        • et al.
        Effect of Pembrolizumab plus Neoadjuvant Chemotherapy on pathologic complete response in women with early-stage Breast Cancer: an analysis of the ongoing phase II adaptively randomized I-SPY2 trial.
        JAMA Oncol. 2020; 6: 676-684https://doi.org/10.1001/jamaoncol.2019.6650
        • Loibl S
        • Untch M
        • Burchardi N
        • et al.
        A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study.
        Ann Oncol. 2019; 30: 1279-1288https://doi.org/10.1093/annonc/mdz158
        • Gianni L
        • Egle D
        • Huang C
        • et al.
        Pathologic complete response to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer.
        NeoTRIPaPDL1 Michelangelo randomized study. 2019; (San Antonio Breast Cancer Symposium. Abstract GS3-04. Presented December 12, 2019)
        • Schmid P
        • Adams S
        • Rugo HS
        • et al.
        Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer.
        N Engl J Med. 2018; 379: 2108-2121https://doi.org/10.1056/NEJMoa1809615
        • O'Sullivan H
        • Collins D
        • O'Reilly S
        Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer.
        N Engl J Med. 2019; 380: 986https://doi.org/10.1056/NEJMc1900150
      3. Miles DWGJ, Andre F, Cameron D, et al. Primary results from IMpassion131, a double-blind placeo-controlled randomized III trial of first-line paclitaxel atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. presented at: ESMO Virtual Congress; 2020;

        • Cortes J
        • Cescon DW
        • Rugo HS
        • et al.
        KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer.
        J Clin Oncol. 2020; 38 (-1000): 1000https://doi.org/10.1200/JCO.2020.38.15_suppl.1000
      4. Merck Announces Phase 3 KEYNOTE-355 Trial Met Primary Endpoint of Overall Survival (OS) in Patients with Metastatic Triple-Negative Breast Cancer Whose Tumors Expressed PD-L1 (CPS>10). Accessed August 30, 2021, 2021. Available at: https://www.merck.com/news/merck-announces-phase-3-keynote-355-trial-met-primary-endpoint-of-overall-survival-os-in-patients-with-metast-atic-triple-negative-breast-cancer-whose-tumors-expressed-pd-l1-cps-≥10/

        • Kyte JA
        • Røssevold A
        • Falk RS
        • Naume B.
        ALICE: A randomized placebo-controlled phase II study evaluating atezolizumab combined with immunogenic chemotherapy in patients with metastatic triple-negative breast cancer.
        J Transl Med. 2020; 18: 252https://doi.org/10.1186/s12967-020-02424-7
        • Voorwerk L
        • Slagter M
        • Horlings HM
        • et al.
        Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial.
        Nat Med. 2019; 25: 920-928https://doi.org/10.1038/s41591-019-0432-4
        • Lawson NL
        • Dix CI
        • Scorer PW
        • et al.
        Mapping the binding sites of antibodies utilized in programmed cell death ligand-1 predictive immunohistochemical assays for use with immuno-oncology therapies.
        Mod Pathol. 2020; 33: 518-530https://doi.org/10.1038/s41379-019-0372-z
        • Rugo HS
        • Loi S
        • Adams S
        • et al.
        Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): Post-hoc analysis of IMpassion130.
        Ann Oncol. 2019; 30: v858-v859https://doi.org/10.1093/annonc/mdz394.009
        • Walsh CS.
        Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy.
        Gynecol Oncol. 2015; 137: 343-350https://doi.org/10.1016/j.ygyno.2015.02.017
        • Malone KE
        • Daling JR
        • Doody DR
        • et al.
        Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years.
        Cancer Res. 2006; 66: 8297-8308https://doi.org/10.1158/0008-5472.Can-06-0503
        • Couch FJ
        • Hart SN
        • Sharma P
        • et al.
        Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer.
        J Clin Oncol. 2015; 33: 304-311https://doi.org/10.1200/jco.2014.57.1414
        • Shimelis H
        • LaDuca H
        • Hu C
        • et al.
        Triple-Negative Breast Cancer Risk Genes identified by Multigene Hereditary Cancer Panel Testing.
        J Natl Cancer Inst. 2018; 110: 855-862https://doi.org/10.1093/jnci/djy106
        • Mavaddat N
        • Barrowdale D
        • Andrulis IL
        • et al.
        Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).
        Cancer Epidemiol Biomarkers Prev. 2012; 21: 134-147https://doi.org/10.1158/1055-9965.Epi-11-0775
        • Farmer H
        • McCabe N
        • Lord CJ
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921https://doi.org/10.1038/nature03445
        • Pommier Y
        • O'Connor MJ
        • de Bono J.
        Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action.
        Sci Transl Med. 2016; 8 (362ps17)https://doi.org/10.1126/scitranslmed.aaf9246
        • Litton JK
        • Scoggins ME
        • Hess KR
        • et al.
        Neoadjuvant Talazoparib for patients with operable Breast Cancer with a Germline BRCA Pathogenic Variant.
        J Clin Oncol. 2020; 38: 388-394https://doi.org/10.1200/jco.19.01304
        • Tutt A
        • Kaufman B
        • Garber J
        • et al.
        OlympiA: A randomized phase III trial of olaparib as adjuvant therapy in patients with high-risk HER2-negative breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm).
        Ann Oncol. 2017; 28: v67https://doi.org/10.1093/annonc/mdx362.065
        • Jiao S
        • Xia W
        • Yamaguchi H
        • et al.
        PARP Inhibitor upregulates PD-L1 expression and enhances Cancer-associated Immunosuppression.
        Clin Cancer Res. 2017; 23: 3711-3720https://doi.org/10.1158/1078-0432.Ccr-16-3215
      5. Wang SS K, Xiao, Y., Feng, B., et al. Evaluation of niraparib in combination with anti-PD1/anti-PD-L1 in preclinical models. 2018

        • Domchek SM
        • Postel-Vinay S
        • Im SA
        • et al.
        Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase I/II, basket study.
        Lancet Oncol. 2020; 21: 1155-1164https://doi.org/10.1016/s1470-2045(20)30324-7
        • Vinayak S
        • Tolaney SM
        • Schwartzberg L
        • et al.
        Open-label clinical trial of Niraparib wombined with Pembrolizumab for treatment of advanced or metastatic Triple-Negative Breast Cancer.
        JAMA Oncol. 2019; 5: 1132-1140https://doi.org/10.1001/jamaoncol.2019.1029
        • Robson M
        • Im SA
        • Senkus E
        • et al.
        Olaparib for Metastatic Breast Cancer in patients with a Germline BRCA mutation.
        N Engl J Med. 2017; 377: 523-533https://doi.org/10.1056/NEJMoa1706450
        • Litton JK
        • Rugo HS
        • Ettl J
        • et al.
        Talazoparib in patients with advanced Breast Cancer and a Germline BRCA mutation.
        N Engl J Med. 2018; 379: 753-763https://doi.org/10.1056/NEJMoa1802905
        • Ettl J
        • Quek RGW
        • Lee KH
        • et al.
        Quality of life with talazoparib versus physician's choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase III trial.
        Ann Oncol. 2018; 29: 1939-1947https://doi.org/10.1093/annonc/mdy257
        • Tung NM
        • Robson ME
        • Ventz S
        • et al.
        TBCRC 048: phase II study of Olaparib for Metastatic Breast Cancer and mutations in homologous recombination-related genes.
        J Clin Oncol. 2020; 38: 4274-4282https://doi.org/10.1200/jco.20.02151
        • Stemke-Hale K
        • Gonzalez-Angulo AM
        • Lluch A
        • et al.
        An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer.
        Cancer Res. 2008; 68: 6084-6091https://doi.org/10.1158/0008-5472.Can-07-6854
        • Martínez-Sáez O
        • Chic N
        • Pascual T
        • et al.
        Frequency and spectrum of PIK3CA somatic mutations in breast cancer.
        Breast Cancer Res. 2020; 22: 45https://doi.org/10.1186/s13058-020-01284-9
        • Shah SP
        • Roth A
        • Goya R
        • et al.
        The clonal and mutational evolution spectrum of primary triple-negative breast cancers.
        Nature. 2012; 486: 395-399https://doi.org/10.1038/nature10933
        • Altomare DA
        • Testa JR.
        Perturbations of the AKT signaling pathway in human cancer.
        Oncogene. 2005; 24: 7455-7464https://doi.org/10.1038/sj.onc.1209085
        • Pérez-Tenorio G
        • Alkhori L
        • Olsson B
        • et al.
        PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer.
        Clin Cancer Res. 2007; 13: 3577-3584https://doi.org/10.1158/1078-0432.Ccr-06-1609
        • Millis SZ
        • Gatalica Z
        • Winkler J
        • et al.
        Predictive Biomarker Profiling of >6000 Breast Cancer Patients Shows Heterogeneity in TNBC, With Treatment Implications.
        Clin Breast Cancer. 2015; 15 (.e3): 473-481https://doi.org/10.1016/j.clbc.2015.04.008
      6. The therascreen PIK3CA RGQ PCR Kit- P190001 and P190004. Accessed March 22, 2021. Available at: https://www.fda.gov/medical-devices/recently-approved-devices/therascreen-pik3ca-rgq-pcr-kit-p190001-and-p190004

        • André F
        • Ciruelos E
        • Rubovszky G
        • et al.
        Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced Breast Cancer.
        N Engl J Med. 2019; 380: 1929-1940https://doi.org/10.1056/NEJMoa1813904
        • Yan Y
        • Serra V
        • Prudkin L
        • et al.
        Evaluation and clinical analyses of downstream targets of the Akt Inhibitor GDC-0068.
        Clin Cancer Res. 2013; 19: 6976-6986https://doi.org/10.1158/1078-0432.Ccr-13-0978
      7. Davies BR, Greenwood H, Dudley P, et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: Pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther. 2012;11:873-87. doi:10.1158/1535-7163.Mct-11-0824-t

        • Addie M
        • Ballard P
        • Buttar D
        • et al.
        Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases.
        J Med Chem. 2013; 56: 2059-2073https://doi.org/10.1021/jm301762v
        • Schmid P
        • Abraham J
        • Chan S
        • et al.
        Capivasertib plus Paclitaxel versus placebo plus Paclitaxel as first-line therapy for metastatic Triple-Negative Breast Cancer: the PAKT trial.
        J Clin Oncol. 2020; 38: 423-433https://doi.org/10.1200/jco.19.00368
        • Kim SB
        • Dent R
        • Im SA
        • et al.
        Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase II trial.
        Lancet Oncol. 2017; 18: 1360-1372https://doi.org/10.1016/s1470-2045(17)30450-3
      8. Dent R, Kim SB, Oliveira M, et al. Double-blind placebo-controlled randomized phase III trial evaluating first-line ipatasertib combined with paclitaxel for PIK3CA/AKT1/PTEN-altered locally advanced unresectable or metastatic triple-negative breast cancer: primary results from IPATunity130 cohort A. Presented at: 2020 San Antonio Breast Cancer Symposium; December 8-11, 2020; Virtual.

        • Nagayama A
        • Vidula N
        • Ellisen L
        • Bardia A.
        Novel antibody-drug conjugates for triple negative breast cancer.
        Ther Adv Med Oncol. 2020; 121758835920915980https://doi.org/10.1177/1758835920915980
        • Bardia A
        • Mayer IA
        • Diamond JR
        • et al.
        Efficacy and safety of Anti-Trop-2 antibody drug conjugate Sacituzumab Govitecan (IMMU-132) in heavily pretreated patients with metastatic Triple-Negative Breast Cancer.
        J Clin Oncol. 2017; 35: 2141-2148https://doi.org/10.1200/jco.2016.70.8297
        • Khoury K
        • Feldman R
        • Pohlmann PR
        • et al.
        Molecular characterization of trophoblast cell surface antigen 2 (Trop-2) positive triple negative breast cancer (TNBC).
        J Clin Oncol. 2019; 37 (-e14651): e14651https://doi.org/10.1200/JCO.2019.37.15_suppl.e14651
        • Pommier Y.
        DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition.
        Chem Rev. 2009; 109: 2894-2902https://doi.org/10.1021/cr900097c
      9. FDA grants accelerated approval to sacituzumab govitecan-hziy for metastatic triple negative breast cancer. Updated 4/22/2020. Accessed 2/15/ 2021, Available at: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-sacituzumab-govitecan-hziy-metastatic-triple-negative-breast-cancer

        • Bardia A
        • Hurvitz SA
        • Tolaney SM
        • et al.
        Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer.
        N Engl J Med. 2021; 384: 1529-1541https://doi.org/10.1056/NEJMoa2028485
        • Taylor KM
        • Morgan HE
        • Johnson A
        • Hadley LJ
        • Nicholson RI.
        Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters.
        Biochem J. 2003; 375: 51-59https://doi.org/10.1042/bj20030478
        • Modi S.
        • Pusztai L.
        • Forero A.
        • et al.
        Phase 1 study of the antibody-drug conjugate ladiratuzumab vedotin (SGN-LIV1A) in patients with heavily pretreated triple-negative metastatic breast cancer.
        Presented at: 2016 San Antonio Breast Cancer Symposium. 2017; (San Antonio, Texas. Abstract PD3-14)
        • Müller P
        • Kreuzaler M
        • Khan T
        • et al.
        Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade.
        Sci Transl Med. 2015; 7: 315ra188https://doi.org/10.1126/scitranslmed.aac4925
        • Cao A
        • Heiser R
        • Law C-L
        • Gardai S.
        Abstract 4914: Auristatin-based antibody drug conjugates activate multiple ER stress response pathways resulting in immunogenic cell death and amplified T-cell responses.
        Cancer Res. 2016; 76 (-4914): 4914
        • Han HS
        • Alemany CA
        • Brown-Glaberman UA
        • et al.
        SGNLVA-002: Single-arm, open label phase Ib/II study of ladiratuzumab vedotin (LV) in combination with pembrolizumab for first-line treatment of patients with unresectable locally advanced or metastatic triple-negative breast cancer.
        J Clin Oncol. 2019; 37 (-TPS1110): TPS1110https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS1110
        • Han H
        • Diab S
        • Alemany C
        • et al.
        Abstract PD1-06: Open label phase Ib/II study of ladiratuzumab vedotin in combination with pembrolizumab for first-line treatment of patients with unresectable locally-advanced or metastatic triple-negative breast cancer.
        Cancer Res. 2020; 80 (PD1-06-PD1-06)https://doi.org/10.1158/1538-7445.Sabcs19-pd1-06
        • Yardley D
        • Abu-Khalaf M
        • Boni V
        • et al.
        Abstract OT2-06-04: MORPHEUS: A phase Ib/II trial platform evaluating the safety and efficacy of multiple cancer immunotherapy combinations in patients with hormone receptor–positive and triple-negative breast cancer.
        Cancer Res. 2019; 79 (OT2-06)https://doi.org/10.1158/1538-7445.SABCS18-OT2-06-04
        • Cardillo TM
        • Sharkey RM
        • Rossi DL
        • Arrojo R
        • Mostafa AA
        • Goldenberg DM.
        Synthetic Lethality Exploitation by an Anti-Trop-2-SN-38 Antibody-Drug Conjugate, IMMU-132, Plus PARP Inhibitors in BRCA1/2-wild-type Triple-Negative Breast Cancer.
        Clin Cancer Res. 2017; 23: 3405-3415https://doi.org/10.1158/1078-0432.Ccr-16-2401
        • Niemeier LA
        • Dabbs DJ
        • Beriwal S
        • Striebel JM
        • Bhargava R.
        Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation.
        Mod Pathol. 2010; 23: 205-212https://doi.org/10.1038/modpathol.2009.159
        • Giovannelli P
        • Di Donato M
        • Galasso G
        • Di Zazzo E
        • Bilancio A
        • Migliaccio A.
        The Androgen Receptor in Breast Cancer.
        Front Endocrinol (Lausanne). 2018; 9: 492https://doi.org/10.3389/fendo.2018.00492
        • Park S
        • Koo J
        • Park HS
        • et al.
        Expression of androgen receptors in primary breast cancer.
        Ann Oncol. 2010; 21: 488-492https://doi.org/10.1093/annonc/mdp510
        • Vera-Badillo FE
        • Templeton AJ
        • de Gouveia P
        • et al.
        Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis.
        J Natl Cancer Inst. 2014; 106: djt319https://doi.org/10.1093/jnci/djt319
        • Qu Q
        • Mao Y
        • Fei XC
        • Shen KW.
        The impact of androgen receptor expression on breast cancer survival: a retrospective study and meta-analysis.
        PLoS One. 2013; 8: e82650https://doi.org/10.1371/journal.pone.0082650
        • Loibl S
        • Müller BM
        • von Minckwitz G
        • et al.
        Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy.
        Breast Cancer Res Treat. 2011; 130: 477-487https://doi.org/10.1007/s10549-011-1715-8
        • Santonja A
        • Sánchez-Muñoz A
        • Lluch A
        • et al.
        Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy.
        Oncotarget. 2018; 9: 26406-26416https://doi.org/10.18632/oncotarget.25413
        • Gucalp A
        • Tolaney S
        • Isakoff SJ
        • et al.
        Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer.
        Clin Cancer Res. 2013; 19: 5505-5512https://doi.org/10.1158/1078-0432.Ccr-12-3327
        • Traina TA
        • Miller K
        • Yardley DA
        • et al.
        Enzalutamide for the Treatment of Androgen Receptor-Expressing Triple-Negative Breast Cancer.
        J Clin Oncol. 2018; 36: 884-890https://doi.org/10.1200/jco.2016.71.3495
        • Bonnefoi H
        • Grellety T
        • Tredan O
        • et al.
        A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1).
        Ann Oncol. 2016; 27: 812-818https://doi.org/10.1093/annonc/mdw067
        • Karuturi M.
        Alpelisib and Enzalutamide in Treating Patients With Androgen Receptor and PTEN Positive Metastatic Breast Cancer.
        MD Anderson, 2017
        • Traina TA
        • Miller K
        • Yardley DA
        • et al.
        Results from a phase II study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC).
        J Clin Oncol. 2015; 33 (-1003): 1003https://doi.org/10.1200/jco.2015.33.15_suppl.1003